

Waveguide Optics for All Day Wearable Displays

Evolution

Ph.D. – Stereo Shutter, Acoustic 3D Tracked, VR

Virtuality - 1993

Virtuality CS1000 – Public Virtual Reality Pod 40DFOV

Virtuality - 1995

Virtuality CS2000 – Multi-Player 43DFOV

Virtual Gloves Haptic feedback - \$60k

DigiLens Inc. Confidential and Proprietary. Use, reproduction, or disclosure is subject to restrictions.

Virtuality / Atari – Consumer VR System – 1997/1999

Consumer, IR Optical Tracking, 40DFOV \$499, Single Panel Duel Lens

All Day Wearable Displays

What We Do

Innovative Augmented Reality Display and Sensor Solutions for OEM's

DigiLens Inc.- Technology and Services

Design Tools

Sample / Manufacturing

Optical Materials

Manufacturing Tools

DigiLens AeroHUD – First Waveguide HUD in Commercial Service - FAA Certified.

Embraer HUD, EVS certified for Legacy 450, 500 Head-Up Display and Enhanced Vision System awarded FAA/EASA/ANAC certification for Legacy 450 and Legacy 500. October 12th, 2016 Digilens HUD - breaks "FOV and Size LIMITATIONS -

4x Larger AR - HUD

"Continental Speeds up Evolution of AR Head-up Displays through Strategic Partnership with DigiLens"

40

Levs 3

The image reflects off the windscreen

6x Smaller Volume Section view

9 L

11

Eyebox

Entinental

Helmet and Eyeglass Display Drivers – Productivity, Communications and Safety

HMD Types	Platform	Frequency of Use	Task Complexity	Field of View	Oculars	3D Sensing / 3D Display	Eye Tracking
Monocular	Eyeglasses, Helmets & Hardhats	Occasional to All Day	Simple	Small / Medium	Monocular	No	No
Binocular		Occasional	Simple to Moderate	Medium / Wide	Binocular		
Binocular + 3D			Moderate to Complex			Yes	Yes

Monocular Data/Video Viewer

Binocular, Wide FOV, 3DOF Tracked, Data/Video Viewer Interactive

Binocular, 3D, Wide FOV, 6DOF Tracked, Variable Depth of Focus, Foveated Imaging, Data/Video/VR Interactive

Waveguide Technology

DigiLens Optical System in a Waveguide

- Based on proprietary liquid crystal based nanomaterial.
- Nanoscale diffractive patterns are selectively laser scanned into a waveguide display eyepiece using a proprietary process.
- Many optical functions (IP Cores) can be integrated in thin layers.
- The exposed diffractive patterns, act like transparent mirrors, performing optical functions such as redirecting, input/output light or magnifying the tiny image from a microdisplay chip.
- DigiLens waveguides are also switchable, allowing a full color image to be selectively guided, avoiding color smearing.
- The diffractive patterns are optically printed (not etched):
 - Optical advantage: 100% efficiency and a wider FOV.
 - Manufacturing advantage: lower volume costs.

Principles of Switchable Bragg Gratings

Bragg Gratings Vs. Surface Relief : Fundamental Advantages

Surface Relief Gratings

Surface Relief Gratings limited by-

- · Grating physics.
- Ability to optically isolate layers.
- Higher orders and dispersion.
- Diffraction Angle same for all gratings as determined by $\Lambda_{
 m s}$
- Key variables: index modulation, thickness, k-vector (K)
- Model using Kogelnik theory (with modifications for birefringence).
- Modelling DigiLens waveguides is a 3D task DigiLens Tools Enable

RECIPROCITY

- Diffraction gratings are two way reciprocal devices.
- 99% efficient = Wide FOV and Low Power for mobile
- Reciprocal paths are both 'On Bragg' so supported
- Reciprocal paths ensure stray light is not generated.

DigiLens Optical System in a Waveguide – for Helmet or Eyeglasses

Waveguide Display

- □ 3mm Glass/Plastic Optic
- □ Low Cost Copy from Master

Custom Printed Patterns

- Lenses, filters, prisms, pupil expansion
- □ Switching enables RGB color

Waveguide Optic

- 92% Transparent
- Eliminates IPD Adjustment

Optical Design Tools

- DigiLens® CAD tools Design integrated optical waveguide devices
- Support / Training
- Application / Mastering design
- Conceiving / Adapting Optical IP cores
- Economy of form factor & functionality comes from the manipulation of complex wave-guided ray paths in 3D space.
- Major challenge for current software such as ZEMAX, CODEV etc.
- Developing custom tools now compatible with ZEMAX for full optical model design

Key IP Cores for AR Displays

Multiplexed Gratings

Fold Gratings

MonoHUD – Wearable

VR Training and Simulation - 1998

Kawasaki – Motorcycle Simulator

2017 – Product Launch of DigiLens MotoHUD

DigiLens MotoHUD™ AR Motorcycle Helmet "Reference Design"

Press Reviews from CES Demo

"BMW made a motorcycle helmet that builds in the best parts of Google C The VERGE, Jacob Kastrenakes, January 9, 2016

"BMW HUD Helmet Uses Top-Notc." DigiLens Technology" Autoevolution, Florin Tibu, January 7, 2016

"BMW Just Debuted a Sci-Fi Motorcycle Helmet" Fortune, John Gaudiosi, January 7, 2016

"DigiLens helmet adds augmented reality view for motorcyclists" Mashable, Adario Strange, January 6, 2016

"More Details On BMW's Motorcycle Helmet HUD" Motorcycle.com, Dennis Chung, January 6, 2016

^{6/23/2017} AR Motorcycle Display – Instruments/Mapping/Communications/Performance

Why are AR HUDs Safer?

MonoHUD Specification

Design Parameter	Current Reference Design Specification
Field of View	AR Display 40° Diagonal; User unobscured FOV 105°
Focal Distance	7.5m - Infinity
Eye Box Size	16 mm V x 10 mm H (18.9 mm diagonal).
Image Resolution	WVGA (854 x 480).
Eye Relief	30 mm (Compatible with Eyeglass Use)
Inter-pupillary Distance (IPD)	Nominally 64 mm. Small IPD adjustment provided.
Colour	Full Color RGB
Brightness (at Eye Box)	10,000 nits (maximum); 10 nits (minimum)
Sequential Contrast	>150:1 (design goal: > 200:1).
Solar Flare	No glare from sunlight/external light sources in eye box.
Operational Temperature	-20C - +80C.
HUD Substrate Thickness	3 mm.
Image Projector Size	20 mm x 20 mm x 10 mm.

Solving Ergonomics for Regulations

Telematics and Personal Assistant Enabled Applications

Navigation and tracking location of other riders

Engine and bike maintenance

Phone calls

Highlight potential hazards

Speed and navigation

Night vision

MotoHUD for Motorcycling

SnowHUD for Snow Sports

BikeHUD for Cycling

MonoHUD – Universal, low cost AR display, for multiple applications

Emerging AR HUD Standards

AR HUD Function	Specification	DigiLens AR HUD		
Field of View	85 deg. Horizontal and Vertical.	Design scalable from current 40° to 80-90°.		
	3D view; both eyes full overlapping.			
	Automatic adjustment of IPD			
	No obscuration of peripheral vision (side & up/down)			
Resolution	1920x1080	Design scalable from current 854 x 480.		
Color	Full color	Prototyping in 2017.		
Refresh Rate	120Hz	Compliant.		
Eye Tracker	Integrated for software user interface commands	Prototyping in 2017.		
Brightness	High visibility (easy to read) display in full ambient light.			
	Brightness adjustment full ambient/dark in 1 s.			
Wearabilty	Head worn weight not to exceed 125 grams.	Currently integrated in production motorcycle		
(Comfort)	Temperature on user skin not exceeding 35C.	helmet.		
	Support for prescription lenses.			

Emerging AR Requirements (Digital Manufacturing and Design Innovation Institute (DMDII))

AR HUD Function	Specification	DigiLens AR HUD
Environmental	0-50C operation	Compliant.
	IP64f standard compliant.	
Safety	Both intrinsically safe certified & non-intrinsically safe products options.	Expected to comply.
	Meeting OSHA and MSHA requirements for safety glasses.	Eyetracker uses eye safe
	Optional side shield safety requirement compliance.	sources.
Visual Tracking	AR objects scaled and anchored to the physical world.	Partners to develop.
	AR object position accuracy to within + 5mm.	Expected to comply.
	Capable of scanning QR code (2"x2") from of 5 ft. from +60° off axis.	
Battery Life	Typically, 12 hours minimum	Expected to comply.
Connectivity	Bluetooth wireless and Wi-Fi wireless 802.11 standard.	Partners to develop.
		Expected to comply.
Inputs/Outputs	GPS; Bluetooth Mouse/ Touch Pad; Bluetooth button	Partners to develop.
	Independent device for pointer control	Expected to comply.
	Wireless microphone (directional), active noise cancelling, safe: 0-50C.	
	Sound (wired/wireless)	

